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Determining the chromatic number of random graphs is one of the longest-standing challenges in probabilistic
combinatorics. For the Erdős-Rényi model, the single most intensely studied model in the random graphs literature,
the question dates back to the seminal 1960 paper that started the theory of random graphs [4].

Apart from GER(n,m), the model that has received the most attention certainly is the random regular graph
G(n, d). We provide an almost complete solution to the chromatic number problem on G(n, d), at least in the
case that d remains fixed as n → ∞. The strongest previous result on the chromatic number of G(n, d) is due to
Kemkes, Pérez-Giménez and Wormald [5]. They proved that w.h.p. for k ≥ 3 if d ∈ ((2k − 3) ln(k − 1), (2k −
2) ln(k−1)) then χ(G(n, d)) = k and if d ∈ [(2k−2) ln(k−1), (2k−1) ln k] then χ(G(n, d)) ∈ {k, k + 1}. These
bounds imply that G(n, d) is k-colorable w.h.p. if d < (2k − 2) ln(k − 1), while G(n, d) fails to be k-colorable
w.h.p. if d > (2k − 1) ln k. Our main result is

Theorem 1 There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that the following is true.

1. If d ≤ (2k − 1) ln k − 2 ln 2− εk, then G(n, d) is k-colorable w.h.p.

2. If d ≥ (2k − 1) ln k − 1 + εk, then G(n, d) fails to be k-colorable w.h.p.

This implies that for every integer k exceeding a certain constant k0 we identify a number dk−col such that
G(n, d) is k-colorable w.h.p. if d < dk−col and non-k-colorable w.h.p. if d > dk−col.

The best current results on coloring GER(n,m) as well as the best prior result on χ(G(n, d)) are obtained via
the second moment method [1, 3, 5]. So are the present results. Recently, Coja-Oghlan and Vilenchik [3] improved
the result from [1] on the chromatic number of GER(n,m). This improvement is obtained by considering a
different random variable, namely the number Zk,good of “good” k-colorings instead of Zk−col the number of all
k-colorings. The definition of this random variable draws on intuition from non-rigorous statistical mechanics
work on random graph coloring [6, 8]. Crucially, the concept of good colorings facilitates the computation of the
second moment. Theorem 1 provides a result matching [3] for G(n, d). Following [5], we combine the second
moment bound from [3] with small subgraph conditioning.

The previous lower bound on the chromatic number of G(n, d) is based on a simple first moment argument
over the number of k-colorings. The bound that can be obtained in this way, attributed to Molloy and Reed [7], is
that G(n, d) is non-k-colorable w.h.p. if d > (2k − 1) ln k. By contrast, the second assertion in Theorem 1 marks
a strict improvement. The proof is via an adaptation of techniques developed in [2] for the random k-NAESAT
problem. Extending this argument to the chromatic number problem on G(n, d) requires substantial technical
work.
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