SPANNING STRUCTURES AND UNIVERSALITY IN SPARSE RANDOM HYPERGRAPHS

OLAF PARCZYK

parczyk@math.uni-frankfurt.de

Institute of Mathematics, Goethe University Frankfurt

ABSTRACT. Finding spanning subgraphs is a well studied problem in random graph theory, in the case of hypergraphs less is known and it is natural to study the corresponding spanning problems for random hypergraphs. We adapt a general result of Riordan from random graphs to random r-uniform hypergraphs $\mathcal{H}^{(r)}(n, p)$ and discuss some examples.

Moreover, we study universality, i.e. when does an *r*-uniform hypergraph contain *any* hypergraph on *n* vertices and with maximum vertex degree bounded by Δ ? For $\mathcal{H}^{(r)}(n,p)$ we show that this holds for $p = \omega \left((\ln n/n)^{1/\Delta} \right)$ a.a.s. Furthermore we derive from explicit constructions of universal graphs due to Alon, Capalbo constructions of universal hypergraphs of size almost matching the lower bound $\Omega(n^{r-r/\Delta})$.

This is joint work with Samuel Hetterich and Yury Person.