Universal Zero-One k-Law

A.D. Matushkin

The random graph G(n, p) obeys Zero-One Law if for each first-order property its probability tends to 0 or tends to 1. In [1] S. Shelah and J. Spencer showed that if α is an *irrational* positive number and $p = n^{-\alpha+o(1)}$, then G(n, p) obeys Zero-One Law. In the same paper it was proved that if $\alpha \in (0, 1]$ is a *rational* number, then $G(n, n^{-\alpha})$ does not obey Zero-One Law.

We let \mathcal{L}_k and \mathcal{L} denote the set of properties which are expressed by first-order formulae with quantifier depth at most k and the set of all first-order properties respectively. We say that the random graph G(n, p) obeys Zero-One k-Law if for each $L \in \mathcal{L}_k$ its probability tends to 0 or tends to 1.

In [2, 3] it was shown that the minimal and the maximal numbers α such that random graph $G(n, n^{-\alpha})$ does not obey Zero-One k-Law are $\frac{1}{k-2}$ and $1 - \frac{1}{2^k-2}$ respectively.

Consider rational points $\alpha \in (0,1)$ such that Zero-One k-Law does not hold in their neighborhood. We say that $\alpha \in \mathbb{Q}$ is a k-critical point if for some $A \in \mathcal{L}_k$ the following property is not satisfied. There exists $\delta \in \{0,1\}$ and $\varepsilon > 0$ so that $\lim_{n\to\infty} \mathsf{P}_{n,p}(A) = \delta$ holds for all $p \in [n^{-\alpha-\varepsilon}, n^{-\alpha+\varepsilon}]$. It is known [1] that the set of k-critical points is well ordered under the order >. Hence, there is an interval without any k-critical points to the left of any rational point (in particular, the Zero-One k-Law holds on this interval). We found such an interval explicitly for any $k \geq 4$ and any rational number $t/s \in (0, 1)$.

Theorem 1. Let $\frac{t}{s} \in \mathbb{Q} \cap (0,1)$, $k \ge 4$. Denote $q = \frac{(s+1)^k - 1}{s}$. Then there are no k-critical points inside the interval $\left(\frac{tq}{sq+1}, \frac{t}{s}\right)$.

We also proved, that if t/s is a rational number with numerator not greater than 2, then logarithm of our interval's length has the same asymptotics up to a constant factor (when $n \to \infty$) as logarithm of the biggest interval with right end at (t/s) without k-critical points.

Theorem 2. Let $\frac{t}{s} = \frac{2}{m}$, $m \ge 2$, $k \ge 10m - 5$. Then for $\alpha = \frac{t}{s} - \frac{1}{2^{k-10m+8}m(m-1)}$ the random graph $G(n, n^{-\alpha})$ does not obey Zero-One k-Law.

References

- S. Shelah, J.H. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math. Soc., 1: 97–115, 1988.
- [2] M.E. Zhukovskii, Zero-one k-law, Discrete Mathematics, **312**: 1670–1688, 2012.
- [3] M.E. Zhukovskii The largest critical point in the zero-one k-law, Sbornik: Mathematics (2015), 206(4): 489.