On infinite spectra of first-order properties

M.E. Zhukovskii

The random graph $G(n, p)$ obeys Zero-One Law if for each first-order property its probability tends to 0 or tends to 1. In [1], S. Shelah and J. Spencer showed that if α is an *irrational* positive number and $p(n) = n^{-\alpha + o(1)}$, then $G(n, n^{-\alpha})$ obeys Zero-One Law.

We let \mathcal{L}_k and $\mathcal L$ denote the set of properties which are expressed by first-order formulae with quantifier depthes at most k and the set of all first-order properties respectively. For any $L \in \mathcal{L}$, we define two notions of its spectra, $S^1(L)$ and $S^2(L)$. The first considers $p = n^{-\alpha}$. $S^1(L)$ is the set of $\alpha \in (0,1)$ which does not satisfy the following property: $\lim_{n\to\infty} P(G(n, n^{-\alpha}) \models L)$ exists and is either zero or one. The second considers $p = n^{-\alpha+o(1)}$. $S^2(L)$ is the set of $\alpha \in (0,1)$ which does not satisfy the following property: there exists $\delta \in \{0,1\}$ and $\epsilon > 0$ so that when $n^{-\alpha-\epsilon} < p(n) < n^{-\alpha+\epsilon}$, $\lim_{n\to\infty} P(G(n, p(n)) \models L) = \delta$. It can be shown that for any rational $\alpha \in (0,1)$ there is a first-order property L such that $\alpha \in S^1(L)$. So, the Zero-One Law of Shelah and Spencer implies $\bigcup_{L\in\mathcal{L}}S^1(L)=\mathbb{Q}\cap(0,1)$. It is easy to show that letting L be the property of every two vertices to have a common neighbor, $S^2(L) = \{\frac{1}{2}$ $\frac{1}{2}$ while $S^1(L) = \emptyset$. Thus, for any $L \in \mathcal{L}$, we have $S^1(L) \subset S^2(L)$ but there may not be the equality. However, in [1] Shelah and Spencer proved that every $S^2(L)$ consists only of rational numbers as well.

Let S_k^1 be the union of all $S^1(L)$ where $L \in \mathcal{L}_k$, S_k^2 be the union of all $S^2(L)$ where $L \in \mathcal{L}_k$. In [2, 3], it was shown that the minimal and the maximal numbers in S_k^1 equal $\frac{1}{k-2}$ and $1-\frac{1}{2^{k-2}}$ $\overline{2^k-2}$ respectively. In [4], it was proved that the sets S_k^1 and S_k^2 are infinite when k is large enough. It is also known [5] that all limit points of S_k^1 and S_k^2 are approached only from above. For any $j \in \{1, 2\}$, denote the set of limit points of S_k^j $\frac{j}{k}$ by (S_k^j) (k) . In our joint work with Spencer, we prove that if $k \geq 15$, then $\min(S_k^1)' \leq \frac{1}{k-11}$. If $k \geq 10$, then $\min(S_k^2)' \leq \frac{1}{k-11}$. $\frac{1}{k-7}$. If $k \ge 16$, then $\max(S_k^2)' \ge \max(S_k^1)' \ge 1 - \frac{1}{2^{k-1}}$ $\frac{1}{2^{k-13}}$. Moreover, we prove that the minimal k_1 and k_2 such that $S_{k_1}^1$ and $S_{k_2}^2$ are infinite are from $\{4, \ldots, 12\}$ and $\{4, \ldots, 10\}$ respectively. Recently, we significantly improve this result.

Theorem 1 If $k \ge 5$, then $\frac{1}{[k/2]} \in (S_k^1)'$. If $k \ge 8$, then $\max(S_k^2)' \ge \max(S_k^1)' \ge 1 - \frac{1}{2^{k-1}}$ $\frac{1}{2^{k-5}}$.

Consequently, the minimal k such that the set S_k^1 (S_k^2) is infinite is either 4 or 5.

References

- [1] S. Shelah, J.H. Spencer, Zero-one laws for sparse random graphs, J. Amer. Math. Soc. 1: 97–115, 1988.
- [2] M.E. Zhukovskii, Zero-one k-law, Discrete Mathematics, 2012, 312: 1670–1688.
- [3] M.E. Zhukovskii, The largest critical point in the zero-one k-law, Sbornik: Mathematics (2015), 206(4): 489.
- [4] J.H. Spencer, *Infinite spectra in the first order theory of graphs*, Combinatorica 10(1): 95–102, 1990.
- [5] J.H. Spencer, Threshold spectra via the Ehrenfeucht game, Discrete Applied Math, 30: 235–252, 1991.