Representing Random Permutations as the Product of Two Involutions

Charles Burnette Department of Mathematics Drexel University Philadelphia, PA 19104-2875 cdb72@drexel.edu

July 3, 2015

Abstract

An involution is a permutation that is its own inverse. Given a permutation σ of [n], let $\mathbf{N}_n(\sigma)$ denote the number of ways to write σ as a product of two involutions of [n]. If we endow the symmetric groups S_n with uniform probability measures, then the random variables \mathbf{N}_n are asymptotically lognormal.

The proof is based upon the observation that, for most permutations σ , $\mathbf{N}_n(\sigma)$ can be well approximated by $\mathbf{B}_n(\sigma)$, the product of the cycle lengths of σ . Asymptotic lognormality of \mathbf{N}_n can therefore be deduced from Erdős and Turán's theorem that \mathbf{B}_n itself is asymptotically lognormal.