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Sec 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

Multiple choices:

1 Gangnam style

2 ICM Seoul 2014

3 Mers (Middle East Respiratory Syndrome)

Answer: Mers

Question

What is the proper network (or graph) model explaining
epidemic of Mers?

Answer: Random intersection graph
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Feature of Mers in Korea

Hospital

At the same time
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Graph model about epidemic of Mers

M={Lists of hospitals and dates}
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Sec 1) Definition

V := {v1, . . . , vn}
{L1, . . . , Ln}: a collection of sets

Definition (Intersection graph)

The intersection graph on V generated by {L1, . . . , Ln}
is the graph on V in which

vi ∼ vj if and only if Li ∩ Li 6= ∅.
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Example

M={1, 2, 3, 4, 5, 6}

{1, 3}=Lv1

{2, 3}=Lv2

v1

v2

v4

v3

Lv4
={4, 5}

Lv3
={3, 4}
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Random intersection graph

Definition (Random Intersection graph G (n,m; p))

M: a set of size m.

Li : a random subset obtained by choosing each element in M
indepedently with probabiity p.

The random intersection graph G (n,m; p) is the intersection
graph generated by i.i.d. Li as above.

It was defined by Karoński, Scheinerman, and Singer-Cohen (1999).
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Visualization: Random bipartite graph

...

.  .  .
N, |N|=n

M,  |M|=m

prob p

prob p
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Application

1 A random intersection graph has received a lot of attention
because of a great diversity of applications:

Epidemic
Circuit design
Network user profiling
Analysis of complex networks.

2 The special case when Li ’s are uniformly distributed as
subsets of M of the same size has been applied to
security of wireless sensor networks.
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Sec 1. Definition

Question

When is G (n,m; p) essentially the same as the binomial random
graph G (n, p̂) with the same expected number of edges?

Remark: p̂ := 1− (1− p2)m ∼ mp2 if mp2 is small.

Notion

Distance between two random graphs: Total variation.

Definition

The total variation between two random graphs X and Y is
defined by

TV (X ,Y ) :=
1

2

∑
G

∣∣∣Pr [X = G ]− Pr [Y = G ]
∣∣∣,

where the sum is over all possible graphs G of X and Y .



On a phase transition of the random intersection graph: supercritical region

Sec 1. Definition

Question

When is G (n,m; p) essentially the same as the binomial random
graph G (n, p̂) with the same expected number of edges?

Remark: p̂ := 1− (1− p2)m ∼ mp2 if mp2 is small.

Notion

Distance between two random graphs: Total variation.

Definition

The total variation between two random graphs X and Y is
defined by

TV (X ,Y ) :=
1

2

∑
G

∣∣∣Pr [X = G ]− Pr [Y = G ]
∣∣∣,

where the sum is over all possible graphs G of X and Y .



On a phase transition of the random intersection graph: supercritical region

Sec 1. Definition

Question

When is G (n,m; p) essentially the same as the binomial random
graph G (n, p̂) with the same expected number of edges?

Remark: p̂ := 1− (1− p2)m ∼ mp2 if mp2 is small.

Notion

Distance between two random graphs: Total variation.

Definition

The total variation between two random graphs X and Y is
defined by

TV (X ,Y ) :=
1

2

∑
G

∣∣∣Pr [X = G ]− Pr [Y = G ]
∣∣∣,

where the sum is over all possible graphs G of X and Y .



On a phase transition of the random intersection graph: supercritical region

Sec 2. Results

Sec 2) Previous results

Observation

Let ω →∞ as n→∞.

1 If p ≤ 1
ωn
√
m

,

then two random graphs are the empty graph
with high probability.

2 If p ≥
√

2 ln n+ω
m ,

then two random graphs are the complete graph
with high probability.

Assumption

1

ωn
√

m
≤ p ≤

√
2 ln n + ω

m
.
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Sec 2. Results

Proposition

If m� n3 and ω
n
√
m
≤ p ≤

√
2 ln n−ω

m , then

TV
(

G (n,m; p),G (n, p̂)
)
→ 1.

Idea: By comparing the number of triangles.



On a phase transition of the random intersection graph: supercritical region

Sec 2. Results

Two types of triangles in G (n,m; p)

V1,   Lv1={i, j,    }

V2 V3

V1,    Lv1 has  i

V2 V3

... 

Lv2={i, k,   }   Lv3={j, k,    }... ...

Lv2 has i          Lv3 has i

Almost independent

Artifact triangle



On a phase transition of the random intersection graph: supercritical region

Sec 2. Results

Proposition

If m� n3 and ω
n
√
m
≤ p ≤

√
2 ln n−ω

m , then

TV
(

G (n,m; p),G (n, p̂)
)
→ 1.

Proof:

1 X := the number of independent triangles
Y := the number of artifact triangles

2 tr(G (n,m; p)) = X + Y and tr(G (n, p̂)) = X .
3 With high probability,

E [X + Y ] +ω(σ(X )) ≤ tr(G (n,m; p)) ≤ E [X + Y ] +ω(σ(X ))

E [X ] + ω(σ(X )) ≤ tr(G (n, p̂)) ≤ E [X ] + ω(σ(X ))

4 If m� n3, then σ(X )� E [Y ].
5 tr(G (n,m; p))� tr(G (n, p̂)) with high probability.
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Proposition

If m� n3 and ω
n
√
m
≤ p ≤

√
2 ln n−ω

m , then

TV
(

G (n,m; p),G (n, p̂)
)
→ 1.

Theorem (Fill, Scheinerman and Singer-Cohen (2000))

If m = nα and α > 6, then

TV
(

G (n,m; p),G (n, p̂)
)
→ 0.

Question

What is the total variation if n3 � m� n6?
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Question

What is the total variation if n3 � m� n6?

Theorem (Rybarczyk (2011))

If m = nα and 3 < α ≤ 6, for any monotone property P,
Pr[G (n,m; p) ∈ P] is similar to Pr[G (n, p̂) ∈ P]
(with a technical statement).

Question

What is the total variation if n3 � m� n6?
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Sec 2. Results

Problem

What is the smallest constant α such that
for m = nα and any p = p(n),

TV
(

G (n,m; p),G (n, p̂)
)

= o(1)?

Previous result

3 ≤ α ≤ 6.

Main Theorem (Kim, Lee, Na (2015+))

For m� n4 and 0 ≤ p = p(n) ≤ 1,

TV
(

G (n,m; p),G (n, p̂)
)

= o(1).
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Main Theorem (Kim, Lee, Na (2015+))

For m� n4 and 0 ≤ p = p(n) ≤ 1,

TV
(

G (n,m; p),G (n, p̂)
)

= o(1).

In Progress

If m = n4

log log n , then for p = c√
m

,

TV
(

G (n,m; p),G (n, p̂)
)
≥ 1

2
.

* We believe that 4 in the exponent is tight.
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Artifact triangles

Recall

An artifact triangle is a triangle formed by the same element in M.

1 Fill, Scheinerman and Singer-Cohen (2000):
the case when there is no artifact triangle.

2 Kim, Lee and Na (2015+):
the case when there are not so many artifact triangles.
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V1,   Lv1={i, j,    }

V2 V3

V1,    Lv1 has  i

V2 V3

... 

Lv2={i, k,   }   Lv3={j, k,    }... ...

Lv2 has i          Lv3 has i

Almost independent

Artifact triangle
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Key object

Key object: Diamond graph

A diamond graph = K4 minus one edge.

The number of diamond graphs with two artifact triangles in
G (n,m; p) is small iff

G (n,m; p) ∼ G (n, p̂).

Diamond graph
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Sec 3) Outline of Proof of Main Theorem

Recall: Main Theorem (Kim, Lee, Na (2015+))

For m� n4 and 0 ≤ p ≤ 1,

TV
(

G (n,m; p),G (n, p̂)
)

= o(1).

Remark (essentially by Rybarczyk)

G (n,m; p) is approximated by a random graph G (n, (p2, p3, p4)),
where

p
k

:= 1− e−mpk (1−p)n−k
.
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Definition of G (n, (p2, p3, p4))

Random hypergraph

P2

P3

P4

G(n, (P2, P3, P4) )
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Remark: Why p
k

:= 1− e−mpk (1−p)n−k
?

For a ∈ M, Va := {v : a ∈ Lv}.
For a fixed k-subset U ⊂ V ,

Pr
[
∃a ∈ M s.t. Va = U

]
= 1− (1− pk(1− p)n−k)m.
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Recall: Main Theorem (Kim, Lee, Na (2015+))

For m� n4 and 0 ≤ p ≤ 1,

TV
(

G (n,m; p),G (n, p̂)
)

= o(1).

Key Lemma (Kim, Lee, Na (2015+))

For m� n4 and 0 ≤ p ≤ ( 3 log n
m )1/2,

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)

= o(1).
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Sec 4) Proof of Lemma

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)

:=
1

2

∑
G

∣∣∣Pr [X = G ]− Pr [Y = G ]
∣∣∣

=
∑
G∈G

(
Pr[G(n,p2 )=G ]−min

{
Pr[G(n,(p2,p3,p4))=G ],Pr[G(n,p2 )=G ]

})
.

Observation

If Pr[G (n, (p2, p3, p4)) = G ] ≥ (1− O(ε))Pr[G (n, p2) = G ],
then

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)

= O(ε).
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Pr[G (n, (p2, p3, p4)) = G ]

=
∑

Q⊆H4(G)
T⊆H3(G)

Pr[H4(n, p4) = Q,H3(n, p3) = T ,G (n, p2) = G ]

=
∑

Q⊆H4(G)
T⊆H3(G)

p
|Q|

4 (1−p4 )(
n
4)−|Q|p|T |3 (1−p3 )(

n
3)−|T |p|G |−|K(Q)∪K(T )|

2 (1−p2 )(
n
2)−|G |

= Pr[G (n, p2) = G ]
∑

Q⊆H4(G)
T⊆H3(G)

p
|Q|

4 (1−p4 )(
n
4)−|Q|p|T |3 (1−p3 )(

n
3)−|T |p−|K(Q)∪K(T )|

2 .

Claim

Pr[G (n, (p2, p3, p4)) = G ]

Pr[G (n, p2) = G ]
≥

∑
Q⊆H4(G)

p|Q|
4

(1− p4)(n4)−|Q|p−|K(Q)|
2

×
∑

T⊆H3(G\K(Q))

p|T |
3

(1− p3)(n3)−|T |p−|K(T )|
2

.
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Problem

Problem

Fix 3 < α < 4, and let m = nα.
Find a probability p∗ = p∗(n,m) such that

If p � p∗, then TV (G (n,m; p),G (n, p̂)) = o(1).

If p � p∗, then TV (G (n,m; p),G (n, p̂)) ≥ c ,
for some positive constant c > 0.
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Problem

...

.  .  .

N, |N|=n

M,  |M|=m

prob p

prob p

Problem

1 non-uniform version with pij

2 The red edge is exposed with a probability q.
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Thank you for your attention!
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Three cases

Three cases

Case I: no artifact triangles

Case II: ∃ artifact triangles and no artifact quadruples

Case III: ∃ artifact quadruples
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Case I: no artifact triangles

In this case, the expected number of artifact triangles is small,
that is,

p ≤ ε

nm1/3
.

• By taking T ,Q = ∅, we have

Pr[G (n, (p2, p3, p4)) = G ] ≥ Pr[G (n, p2) = G ](1− p4)(n4)(1− p3)(n3)

= Pr[G (n, p2) = G ](1− O(ε)).

• Hence,

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)
≤ O(ε).

Remark

It gives the result by Fill–Scheinerman–Singer-Cohen (2000).
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Case II: ∃ artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small,
but the expected number of artifact quadruples is small, that is,

ε

nm1/3
< p ≤ ε

n2/3m1/3
.

Remark: It is not possible for an arbitrary G to show

Pr[G (n, (p2, p3, p4)) = G ] ≥ Pr[G (n, p2) = G ](1− O(ε)).

Idea: We consider properties of typical G ∈ G (n, p̂).
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Pr[G (n, (p2, p3, p4)) = G ] ≥ Pr[G (n, p2) = G ](1− O(ε)).

Idea: We consider properties of typical G ∈ G (n, p̂).
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For any family G3 of typical graphs on V ,

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)

≤ Pr[G (n, p2) /∈ G3]

+
∑
G∈G3

(
Pr[G(n,p2 )=G ]−min

{
Pr[G(n,(p2,p3,p4))=G ],Pr[G(n,p2 )=G ]

})
≤ O(ε) +

∑
G∈G3

(
Pr[G(n,p2 )=G ]−min

{
Pr[G(n,(p2,p3,p4))=G ],Pr[G(n,p2 )=G ]

})
.

Goal

For any typical G ∈ G3,

Pr[G (n, (p2, p3, p4)) = G ] ≥ (1− O(ε)) Pr[G (n, p2) = G ].
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|H3(G )| : the number of triangles in G .

I (G ) : the number of diamond graphs, i.e., K4 minus one
edge.

Lemma

Let G3 be the set of all graphs G on V satisfying

|H3(G )| ≥ (1− δ)

(
n

3

)
p3

2
and I (G ) ≤ n4p5

2
/ε.

Then, for ε
nm1/3 < p ≤

(
3 log n
m

)1/2
,

Pr[G (n, p2) ∈ G3] = 1− O(ε).
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Taking Q = ∅, we have

Pr[G (n, (p2, p3, p4)) = G ]

Pr[G (n, p2) = G ]

≥ (1− p4)(n4)
∑

T⊆H3(G)

p|T |
3

(1− p3)(n3)−|T |p−|K(T )|
2

≥ (1− O(ε))

t0∑
t=0

∑
T⊆H3(G)

|T |=t,|K(T )|=3t

pt
3

(1− p3)(n3)−tp−3t
2

,

where

t0 :=
n3mp3

ε
= Θ

(
n3p3

ε

)
.
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Pr[G (n, (p2, p3, p4)) = G ]

Pr[G (n, p2) = G ]

≥ (1− O(ε))

t0∑
t=0

∑
T⊆H3(G)

|T |=t,|K(T )|=3t

pt
3

(1− p3)(n3)−tp−3t
2

= (1− O(ε))

t0∑
t=0

(1−O(ε))((n3)
t

)p3t
2

pt
3

(1− p3)(n3)−tp−3t
2

≥ (1− O(ε))

t0∑
t=0

((n
3

)
t

)
pt

3
(1− p3)(n3)−t

= (1− O(ε))
(

1− Pr
[
Bin
((n

3

)
, p3

)
> t0

])
= 1− O(ε).

It implies that

TV
(

G (n, (p2, p3, p4)),G (n, p2)
)

= O(ε).
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Case III: ∃ artifact triangles and quadruples

In this case, the expected number of artifact quadruples is not
small, that is,

ε

n2/3m1/3
< p ≤

(3 log n

m

)1/2
.

|H4(G )| : the number of quadruples in G .

Lemma

Let G4 ⊂ G3 be the set of all graphs G on V satisfying

|H4(G )| ≥
(

1− 1

εn

)(n

4

)
p6

2
.

Then, for ε
n2/3m1/3 < p ≤

(
3 log n
m

)1/2
,

Pr[G (n, p2) ∈ G4] = 1− O(ε).
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Goal

For any G ∈ G4,

Pr[G (n, (p2, p3, p4)) = G ] ≥ (1− O(ε)) Pr[G (n, p2) = G ].

Pr[G (n, (p2, p3, p4)) = G ]

Pr[G (n, p2) = G ]

≥
∑

Q⊆H4(G)

p
|Q|

4 (1−p4 )(
n
4)−|Q|p−|K(Q)|

2 ·
∑

T⊆H3(G\K(Q))

p
|T |

3 (1−p3 )(
n
3)−|T |p−|K(T )|

2

≥ (1− O(ε)) · min
Q⊆H4(G)
|Q|≤q0

∑
T⊆H3(G\K(Q))

p
|T |

3 (1−p3 )(
n
3)−|T |p−|K(T )|

2 ,

where q0 := n4mp4

ε = Θ
(
n4p4
ε

)
.
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.
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Let t0 :=
n3mp3

ε
= Θ

(
n3p3

ε

)
and r :=

n4m2p6

ε3
= Θ

(
n4p2

3

ε3

)
.

We have that∑
T⊆H3(G\K(Q))

p|T |
3

(1− p3)(n3)−|T |p−|K(T )|
2

≥
t0∑

t=0

∑
T⊆H3(G\Q)
|T |=t,I (T )≤r

pt
3

(1− p3)(n3)−tp−6t+r
2

≥
t0∑

t=0

(1− O(ε))

((n
3

)
t

)
p6t

2 · pt
3

(1− p3)(n3)−tp−6t+r
2

≥ (1− O(ε))pr
2
·

t0∑
t=0

pt
3

(1− p3)(n3)−t ≥ (1− O(ε)),

since pr
2

= (1− e−mp2(1−p)n−2
)r ≥ 1− O(re−mp2

) = 1− O(ε).
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Proof of Lemma 1

Proof of Lemma 1

Lemma

1 TV (G (n,m; p),G (n, (p
k
))) = o(1). (essentially by Rybarczyk)

2 TV(G (n, p2 , p3 , p4),G (n, p2)) = o(1). (Main part)

3 TV(G (n, p2),G (n, p̂)) = o(1). (Not hard)

Idea of Proof

1 Coupling argument

2 Property of Poisson distribution
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Proof of Lemma 1

Coupling argument

Definition

For two random variables X and Y , the coupling (X ′,Y ′) of X and
Y is a random variable on the product of the sample spaces of X
and Y such that the marginal distributions of X ′ and Y ′ are the
distributions of X and Y , respectively.

Lemma

X ,Y : random variables.

1 Any coupling (X ′,Y ′) of X and Y satisfies

TV(X ,Y )≤Pr[X ′ 6= Y ′].

2 There exists a coupling such that

TV(X ,Y )= Pr[X ′ 6= Y ′].
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Proof of Lemma 1

Proof of Lemma (1)

X := the number of columns of the matrix R(n,m; p) with
two or more 1’s.

Pr[|Va| = k] =
(n
k

)
pk(1− p)n−k =: r

k

X = Binom(m, q2) where q2 :=
∑
k≥2

r
k
.
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Proof of Lemma 1

G (n,m; p) can be constructed as follows:

1 K (1), . . . ,K (h), . . . : i.i.d. random complete graphs on subsets
of V

the number of vertices in K (1) is k(≥ 2) with probability r
k
/q2

Then, once the number is given to be k , every k-subset of V is
equally likely to be the vertex set of K (1).
In other words, for a k-subset U of V with k ≥ 2, the
probability of U being the vertex set of K (1) is

r
k

q
2

(
n
k

)−1
.

2 G (n,m; p) is the edge union of X random complete graphs
K (1), ...,K (X ).
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Proof of Lemma 1

Definition (GY )

Y := Poisson(mq2) that is coupled with X so that

Pr[X 6= Y ] = TV(X ,Y ).

Let GY be the graph whose edge set is the (edge) union of
K (1), ...,K (Y ).

Property

1 GY has the same distribution as G (n, (p
k
)).

2

TV(G (n,m; p),GY ) ≤ Pr[G (n,m; p) 6= GY ]

≤ Pr[X 6= Y ] = TV(X ,Y ).
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Lemma (Barbour and Holst (1989))

Let X := Binom(m, q2) and Y := Poisson(mq2). Then

TV(X ,Y ) ≤ q2 .

TV(X ,Y ) ≤ q2 =
∑
k≥2

(
n

k

)
pk(1− p)n−k ≤

∑
k≥2

nkpk = O
(
n2p2

)
= O

(n2 log n

m

)
= o(1).
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Proof of Lemma 1

Problem

Problem

Fix 3 < α < 6, and let m = nα.
Find a probability p∗ = p∗(n,m) such that

If p � p∗, then TV (G (n,m; p),G (n, p̂)) = o(1).

If p � p∗, then TV (G (n,m; p),G (n, p̂)) ≥ c ,
for some positive constant c > 0.

Question

When G (n,m; p) 6∼ G (n, p̂),
what are interesting properties and structures of G (n,m; p)?
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