Sang June Lee

Duksung Women's University Seoul, Korea

17th RS&A conference Carnegie Mellon Univ. July 30, 2015

This is joint work with Jeong Han Kim and Joohan Na (KIAS).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

On a phase transition of the random intersection graph: supercritical region Sec 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

On a phase transition of the random intersection graph: supercritical region Sec 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

Multiple choices:

- Gangnam style
- ICM Seoul 2014
- Mers (Middle East Respiratory Syndrome)

On a phase transition of the random intersection graph: supercritical region Sec 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

Multiple choices:

- Gangnam style
- ICM Seoul 2014
- Mers (Middle East Respiratory Syndrome)

Answer: Mers

On a phase transition of the random intersection graph: supercritical region Sec. 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

Multiple choices:

- Gangnam style
- ICM Seoul 2014
- Mers (Middle East Respiratory Syndrome)

Answer: Mers

Question

What is the proper network (or graph) model explaining epidemic of Mers?

On a phase transition of the random intersection graph: supercritical region Sec. 0. Motivation

Motivation

Question

What was the most issued word in Korea this year?

Multiple choices:

- Gangnam style
- ICM Seoul 2014
- Mers (Middle East Respiratory Syndrome)

Answer: Mers

Question

What is the proper network (or graph) model explaining epidemic of Mers?

Answer: Random intersection graph

Sec 0. Motivation

Feature of Mers in Korea

Sec 0. Motivation

Graph model about epidemic of Mers

Sec 1. Definition

Sec 1) Definition

•
$$V := \{v_1, ..., v_n\}$$

• $\{L_1, \ldots, L_n\}$: a collection of sets

Definition (Intersection graph)

The *intersection graph* on V generated by $\{L_1, \ldots, L_n\}$ is the graph on V in which

$$v_i \sim v_j$$
 if and only if $L_i \cap L_i \neq \emptyset$.

Sec 1. Definition

Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Sec 1. Definition

Random intersection graph

Definition (Random Intersection graph G(n, m; p))

- M: a set of size m.
- L_i: a random subset obtained by choosing each element in M indepedently with probability p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sec 1. Definition

Random intersection graph

Definition (Random Intersection graph G(n, m; p))

- M: a set of size m.
- L_i: a random subset obtained by choosing each element in M indepedently with probability p.
- The random intersection graph G(n, m; p) is the intersection graph generated by i.i.d. L_i as above.

It was defined by Karoński, Scheinerman, and Singer-Cohen (1999).

Sec 1. Definition

Visualization: Random bipartite graph

Sec 1. Definition

Application

 A random intersection graph has received a lot of attention because of a great diversity of applications:

- Epidemic
- Circuit design
- Network user profiling
- Analysis of complex networks.

Sec 1. Definition

Application

- A random intersection graph has received a lot of attention because of a great diversity of applications:
 - Epidemic
 - Circuit design
 - Network user profiling
 - Analysis of complex networks.
- The special case when L_i's are uniformly distributed as subsets of M of the same size has been applied to security of wireless sensor networks.

Sec 1. Definition

Question

When is G(n, m; p) essentially the same as the binomial random graph $G(n, \hat{p})$ with the same expected number of edges?

- ロ ト - 4 回 ト - 4 □ - 4

Remark: $\hat{p} := 1 - (1 - p^2)^m \sim mp^2$ if mp^2 is small.

Sec 1. Definition

Question

When is G(n, m; p) essentially the same as the binomial random graph $G(n, \hat{p})$ with the same expected number of edges?

Remark: $\hat{p} := 1 - (1 - p^2)^m \sim mp^2$ if mp^2 is small.

Notion

Distance between two random graphs: Total variation.

Sec 1. Definition

Question

When is G(n, m; p) essentially the same as the binomial random graph $G(n, \hat{p})$ with the same expected number of edges?

Remark:
$$\hat{p} := 1 - (1 - p^2)^m \sim mp^2$$
 if mp^2 is small.

Notion

Distance between two random graphs: Total variation.

Definition

The total variation between two random graphs X and Y is defined by

$$\operatorname{TV}(X,Y) := \frac{1}{2} \sum_{G} \left| \operatorname{Pr}[X = G] - \operatorname{Pr}[Y = G] \right|,$$

where the sum is over all possible graphs G of X and Y.

Sec 2. Results

Sec 2) Previous results

Observation

- Let $\omega \to \infty$ as $n \to \infty$.
 - If $p \leq \frac{1}{\omega n \sqrt{m}}$,

then two random graphs are the empty graph with high probability.

Sec 2. Results

Sec 2) Previous results

Observation

- Let $\omega \to \infty$ as $n \to \infty$.
 - If $p \leq \frac{1}{\omega n \sqrt{m}}$,

then two random graphs are the empty graph with high probability.

• If
$$p \ge \sqrt{\frac{2\ln n + \omega}{m}}$$
,

then two random graphs are the complete graph with high probability.

Sec 2. Results

Sec 2) Previous results

Observation

- Let $\omega \to \infty$ as $n \to \infty$.
 - $If p \leq \frac{1}{\omega n \sqrt{m}},$

then two random graphs are the empty graph with high probability.

2 If
$$p \ge \sqrt{\frac{2\ln n + \omega}{m}}$$
,

then two random graphs are the complete graph with high probability.

Assumption

$$\frac{1}{\omega n \sqrt{m}} \le p \le \sqrt{\frac{2 \ln n + \omega}{m}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Sec 2. Results

Proposition If $m \ll n^3$ and $\frac{\omega}{n\sqrt{m}} \le p \le \sqrt{\frac{2\ln n - \omega}{m}}$, then $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) \to \mathbf{1}.$

Idea: By comparing the number of triangles.

Sec 2. Results

Two types of triangles in G(n, m; p)

Sec 2. Results

Proposition

If
$$m \ll n^3$$
 and $\frac{\omega}{n\sqrt{m}} \le p \le \sqrt{\frac{2\ln n - \omega}{m}}$, then
 $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) \to 1.$

Proof:

- X := the number of independent triangles
 Y := the number of artifact triangles
- 2 tr(G(n, m; p)) = X + Y and $tr(G(n, \hat{p})) = X$.
- With high probability,

 $E[X+Y] + \omega(\sigma(X)) \le tr(G(n, m; p)) \le E[X+Y] + \omega(\sigma(X))$

 $E[X] + \omega(\sigma(X)) \le tr(G(n, \hat{p})) \le E[X] + \omega(\sigma(X))$

• If $m \ll n^3$, then $\sigma(X) \ll E[Y]$.

• $tr(G(n, m; p)) \gg tr(G(n, \hat{p}))$ with high probability.

Sec 2. Results

Proposition

If
$$m \ll n^3$$
 and $\frac{\omega}{n\sqrt{m}} \le p \le \sqrt{\frac{2\ln n - \omega}{m}}$, then
 $\operatorname{TV} \Big(G(n, m; p), G(n, \hat{p}) \Big) \to \mathbf{1}.$

Theorem (Fill, Scheinerman and Singer-Cohen (2000))

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If
$$m = n^{\alpha}$$
 and $\alpha > 6$, then
 $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) \rightarrow 0$

Sec 2. Results

Proposition

If
$$m \ll n^3$$
 and $\frac{\omega}{n\sqrt{m}} \le p \le \sqrt{\frac{2\ln n - \omega}{m}}$, then
 $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) \to 1.$

Theorem (Fill, Scheinerman and Singer-Cohen (2000))

If
$$m = n^{\alpha}$$
 and $\alpha > 6$, then
 $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) \rightarrow 0.$

Question

What is the total variation if $n^3 \ll m \ll n^6$?

Sec 2. Results

Question

What is the total variation if $n^3 \ll m \ll n^6$?

Theorem (Rybarczyk (2011))

If $m = n^{\alpha}$ and $3 < \alpha \leq 6$, for any monotone property \mathcal{P} , $\Pr[G(n, m; p) \in \mathcal{P}]$ is similar to $\Pr[G(n, \hat{p}) \in \mathcal{P}]$ (with a technical statement).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sec 2. Results

Question

What is the total variation if $n^3 \ll m \ll n^6$?

Theorem (Rybarczyk (2011))

If $m = n^{\alpha}$ and $3 < \alpha \leq 6$, for any monotone property \mathcal{P} , $\Pr[G(n, m; p) \in \mathcal{P}]$ is similar to $\Pr[G(n, \hat{p}) \in \mathcal{P}]$ (with a technical statement).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sec 2. Results

Question

What is the total variation if $n^3 \ll m \ll n^6$?

Theorem (Rybarczyk (2011))

If $m = n^{\alpha}$ and $3 < \alpha \leq 6$, for any monotone property \mathcal{P} , $\Pr[G(n, m; p) \in \mathcal{P}]$ is similar to $\Pr[G(n, \hat{p}) \in \mathcal{P}]$ (with a technical statement).

Question

What is the total variation if $n^3 \ll m \ll n^6$?

Sec 2. Results

Problem

What is the smallest constant α such that for $m = n^{\alpha}$ and any p = p(n), $TV(G(n, m; p), G(n, \hat{p})) = o(1)$?

Previous result

 $3 \le \alpha \le 6.$

Sec 2. Results

Problem

What is the smallest constant α such that for $m = n^{\alpha}$ and any p = p(n), $TV(G(n, m; p), G(n, \hat{p})) = o(1)$?

Previous result

$$3 \le \alpha \le 6.$$

Main Theorem (Kim, Lee, Na (2015+)) For $m \gg n^4$ and $0 \le p = p(n) \le 1$,

$$\mathrm{TV}\Big(G(n,m;p),G(n,\hat{p})\Big)=o(1).$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Sec 2. Results

Main Theorem (Kim, Lee, Na (2015+)) For $m \gg n^4$ and $0 \le p = p(n) \le 1$, $TV(G(n, m; p), G(n, \hat{p})) = o(1).$

In Progress If $m = \frac{n^4}{\log \log n}$, then for $p = \frac{c}{\sqrt{m}}$, $\mathrm{TV}\Big(G(n, m; p), G(n, \hat{p})\Big) \ge \frac{1}{2}.$

* We believe that 4 in the exponent is tight.

Sec 2. Results

Artifact triangles

Recall

An artifact triangle is a triangle formed by the same element in M.

- Fill, Scheinerman and Singer-Cohen (2000): the case when there is no artifact triangle.
- Wim, Lee and Na (2015+):

the case when there are not so many artifact triangles.

Sec 2. Results

Sec 2. Results

Key object

Key object: Diamond graph

- A diamond graph = K_4 minus one edge.
- The number of diamond graphs with two artifact triangles in G(n, m; p) is small iff

$$G(n,m;p) \sim G(n,\hat{p}).$$

Sec 3) Outline of Proof of Main Theorem

Recall: Main Theorem (Kim, Lee, Na (2015+)) For $m \gg n^4$ and $0 \le p \le 1$,

$$\operatorname{TV}(G(n,m;p),G(n,\hat{p})) = o(1).$$

Remark (essentially by Rybarczyk)

G(n, m; p) is approximated by a random graph $G(n, (p_2, p_3, p_4))$, where

$$p_k := 1 - e^{-mp^k(1-p)^{n-k}}$$

On a phase transition of the random intersection graph: supercritical region Sec 3. Outline of Proof

Definition of $G(n, (p_2, p_3, p_4))$

Sec 3. Outline of Proof

Remark: Why
$$p_k := 1 - e^{-mp^k(1-p)^{n-k}}$$
?

• For
$$a \in M$$
, $V_a := \{v : a \in L_v\}$.

• For a fixed *k*-subset $U \subset V$,

$$\Pr\left[\exists a \in M \text{ s.t. } V_a = U\right] = 1 - (1 - p^k (1 - p)^{n-k})^m.$$

Sec 3. Outline of Proof

Recall: Main Theorem (Kim, Lee, Na (2015+)) For $m \gg n^4$ and $0 \le p \le 1$,

$$\operatorname{TV}\left(G(n,m;p),G(n,\hat{p})\right)=o(1).$$

Key Lemma (Kim, Lee, Na (2015+)) For $m \gg n^4$ and $0 \le p \le (\frac{3 \log n}{m})^{1/2}$, $\mathrm{TV}\Big(G(n, (p_2, p_3, p_4)), G(n, p_2)\Big) = o(1).$

Sec 4) Proof of Lemma

$$TV\left(G(n, (p_2, p_3, p_4)), G(n, p_2)\right)$$

:= $\frac{1}{2} \sum_{G} \left| \Pr[X = G] - \Pr[Y = G] \right|$
= $\sum_{G \in \mathcal{G}} \left(\Pr[G(n, p_2) = G] - \min\left\{ \Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G] \right\} \right).$

・ロト・日本・モト・モート ヨー うへで

Sec 4) Proof of Lemma

$$TV\left(G(n, (p_2, p_3, p_4)), G(n, p_2)\right)$$

:= $\frac{1}{2} \sum_{G} \left| \Pr[X = G] - \Pr[Y = G] \right|$
= $\sum_{G \in \mathcal{G}} \left(\Pr[G(n, p_2) = G] - \min\left\{ \Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G] \right\} \right).$

Observation

If $\Pr[G(n, (p_2, p_3, p_4)) = G] \ge (1 - O(\epsilon))\Pr[G(n, p_2) = G],$ then $\operatorname{TV}(G(n, (p_2, p_3, p_4)), G(n, p_2)) = O(\epsilon).$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Sec 4. Proof of Key Lemma

$$\Pr[G(n, (p_2, p_3, p_4)) = G]$$

$$= \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} \Pr[\mathcal{H}_4(n, p_4) = Q, \mathcal{H}_3(n, p_3) = T, G(n, p_2) = G]$$

$$= \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} p_4^{|Q|} (1 - p_4)^{\binom{n}{4} - |Q|} p_3^{|T|} (1 - p_3)^{\binom{n}{3} - |T|} p_2^{|G| - |K(Q) \cup K(T)|} (1 - p_2)^{\binom{n}{2} - |G|}$$

$$= \Pr[G(n, p_2) = G] \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} p_4^{|Q|} (1 - p_4)^{\binom{n}{4} - |Q|} p_3^{|T|} (1 - p_3)^{\binom{n}{3} - |T|} p_2^{-|K(Q) \cup K(T)|}.$$

Sec 4. Proof of Key Lemma

$$\Pr[G(n, (p_2, p_3, p_4)) = G]$$

$$= \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} \Pr[\mathcal{H}_4(n, p_4) = Q, \mathcal{H}_3(n, p_3) = T, G(n, p_2) = G]$$

$$= \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} p_4^{|Q|} (1 - p_4)^{\binom{n}{4} - |Q|} p_3^{|T|} (1 - p_3)^{\binom{n}{3} - |T|} p_2^{|G| - |K(Q) \cup K(T)|} (1 - p_2)^{\binom{n}{2} - |G|}$$

$$= \Pr[G(n, p_2) = G] \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G)}} p_4^{|Q|} (1 - p_4)^{\binom{U}{4} - |Q|} p_3^{|T|} (1 - p_3)^{\binom{U}{3} - |T|} p_2^{-|K(Q) \cup K(T)|}.$$

Claim

$$\frac{\Pr[G(n, (p_2, p_3, p_4)) = G]}{\Pr[G(n, p_2) = G]} \ge \sum_{\substack{Q \subseteq \mathcal{H}_4(G) \\ T \subseteq \mathcal{H}_3(G \setminus K(Q))}} p_4^{|Q|} (1 - p_4)^{\binom{n}{4} - |Q|} p_2^{-|K(Q)|} \times \sum_{\substack{T \subseteq \mathcal{H}_3(G \setminus K(Q)) \\ T \subseteq \mathcal{H}_3(G \setminus K(Q))}} p_3^{|T|} (1 - p_3)^{\binom{n}{3} - |T|} p_2^{-|K(T)|}.$$

Sec 4. Proof of Key Lemma

Problem

Problem

Fix $3 < \alpha < 4$, and let $m = n^{\alpha}$. Find a probability $p^* = p^*(n, m)$ such that

- If $p \ll p^*$, then $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) = o(1)$.
- If $p \gg p^*$, then $TV(G(n, m; p), G(n, \hat{p})) \ge c$, for some positive constant c > 0.

Sec 4. Proof of Key Lemma

Problem

Problem

- **1** non-uniform version with p_{ij}
- 2 The red edge is exposed with a probability q.

Sec 4. Proof of Key Lemma

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sec 4. Proof of Key Lemma

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Sec 4. Proof of Key Lemma

Three cases

- Case I: no artifact triangles
- Case II: ∃ artifact triangles and no artifact quadruples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Case III: ∃ artifact quadruples

Case I: no artifact triangles

In this case, the expected number of artifact triangles is small, that is,

$$p \leq rac{arepsilon}{nm^{1/3}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Case I: no artifact triangles

In this case, the expected number of artifact triangles is small, that is,

$$p \leq \frac{\varepsilon}{nm^{1/3}}$$

• By taking $T, Q = \emptyset$, we have

$$\Pr[G(n, (p_2, p_3, p_4)) = G] \ge \Pr[G(n, p_2) = G](1 - p_4)^{\binom{n}{4}}(1 - p_3)^{\binom{n}{3}} = \Pr[G(n, p_2) = G](1 - O(\varepsilon)).$$

Case I: no artifact triangles

In this case, the expected number of artifact triangles is small, that is,

$$p \leq \frac{\varepsilon}{nm^{1/3}}$$

• By taking $T, Q = \emptyset$, we have

$$\begin{aligned} \mathsf{Pr}[G(n,(p_2,p_3,p_4)) &= G] \geq \mathsf{Pr}[G(n,p_2) = G](1-p_4)^{\binom{n}{4}}(1-p_3)^{\binom{n}{3}} \\ &= \mathsf{Pr}[G(n,p_2) = G](1-O(\varepsilon)). \end{aligned}$$

Hence,

$$\mathrm{TV}\Big(G(n,(p_2,p_3,p_4)),G(n,p_2)\Big)\leq O(\varepsilon).$$

Case I: no artifact triangles

In this case, the expected number of artifact triangles is small, that is,

$$p \leq rac{\varepsilon}{nm^{1/3}}$$

• By taking $T, Q = \emptyset$, we have

$$\begin{aligned} \mathsf{Pr}[G(n,(p_2,p_3,p_4)) &= G] \geq \mathsf{Pr}[G(n,p_2) = G](1-p_4)^{\binom{n}{4}}(1-p_3)^{\binom{n}{3}} \\ &= \mathsf{Pr}[G(n,p_2) = G](1-O(\varepsilon)). \end{aligned}$$

• Hence,

$$\operatorname{TV}(G(n,(p_2,p_3,p_4)),G(n,p_2)) \leq O(\varepsilon).$$

Remark

It gives the result by Fill-Scheinerman-Singer-Cohen (2000).

Case II: \exists artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small, but the expected number of artifact quadruples is small, that is,

$$\frac{\varepsilon}{nm^{1/3}}$$

Case II: \exists artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small, but the expected number of artifact quadruples is small, that is,

$$\frac{\varepsilon}{nm^{1/3}}$$

Remark: It is not possible for an arbitrary G to show

$$\Pr[G(n,(p_2,p_3,p_4))=G] \geq \Pr[G(n,p_2)=G](1-O(\varepsilon)).$$

Case II: \exists artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small, but the expected number of artifact quadruples is small, that is,

$$\frac{\varepsilon}{nm^{1/3}}$$

Remark: It is not possible for an arbitrary G to show

$$\Pr[G(n,(p_2,p_3,p_4))=G] \geq \Pr[G(n,p_2)=G](1-O(\varepsilon)).$$

Idea: We consider properties of typical $G \in G(n, \hat{p})$.

Sec 4. Proof of Key Lemma

For any family
$$\mathcal{G}_3$$
 of typical graphs on V ,

$$TV\left(G(n, (p_2, p_3, p_4)), G(n, p_2)\right)$$

$$\leq \Pr[G(n, p_2) \notin \mathcal{G}_3]$$

$$+ \sum_{G \in \mathcal{G}_3} \left(\Pr[G(n, p_2) = G] - \min\left\{\Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G]\right\}\right)$$

$$\leq O(\varepsilon) + \sum_{G \in \mathcal{G}_3} \left(\Pr[G(n, p_2) = G] - \min\left\{\Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G]\right\}\right).$$

For any family
$$\mathcal{G}_3$$
 of typical graphs on V ,

$$TV\left(G(n, (p_2, p_3, p_4)), G(n, p_2)\right)$$

$$\leq \Pr[G(n, p_2) \notin \mathcal{G}_3]$$

$$+ \sum_{G \in \mathcal{G}_3} \left(\Pr[G(n, p_2) = G] - \min\left\{\Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G]\right\}\right)$$

$$\leq O(\varepsilon) + \sum_{G \in \mathcal{G}_3} \left(\Pr[G(n, p_2) = G] - \min\left\{\Pr[G(n, (p_2, p_3, p_4)) = G], \Pr[G(n, p_2) = G]\right\}\right).$$

Goal

For any typical $G \in \mathcal{G}_3$,

$$\Pr[G(n, (p_2, p_3, p_4)) = G] \ge (1 - O(\varepsilon)) \Pr[G(n, p_2) = G].$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $|\mathcal{H}_3(G)|$: the number of triangles in G.
- *I*(*G*) : the number of diamond graphs, i.e., *K*₄ minus one edge.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $|\mathcal{H}_3(G)|$: the number of triangles in G.
- *I*(*G*) : the number of diamond graphs, i.e., *K*₄ minus one edge.

Lemma

Let \mathcal{G}_3 be the set of all graphs G on V satisfying $|\mathcal{H}_3(G)| \ge (1-\delta) \binom{n}{3} p_2^3 \text{ and } I(G) \le n^4 p_2^5 / \varepsilon.$ Then, for $\frac{\varepsilon}{nm^{1/3}} ,$ $<math>\Pr[G(n, p_2) \in \mathcal{G}_3] = 1 - O(\varepsilon).$

Sec 4. Proof of Key Lemma

Taking $Q = \emptyset$, we have

$$\frac{\Pr[G(n, (p_2, p_3, p_4)) = G]}{\Pr[G(n, p_2) = G]} \\
\geq (1 - p_4)^{\binom{n}{4}} \sum_{T \subseteq \mathcal{H}_3(G)} p_3^{|T|} (1 - p_3)^{\binom{n}{3} - |T|} p_2^{-|K(T)|} \\
\geq (1 - O(\varepsilon)) \sum_{t=0}^{t_0} \sum_{\substack{T \subseteq \mathcal{H}_3(G) \\ |T| = t, |K(T)| = 3t}} p_3^t (1 - p_3)^{\binom{n}{3} - t} p_2^{-3t},$$

where

$$\mathbf{t}_{0} := \frac{n^{3}mp^{3}}{\varepsilon} = \Theta\left(\frac{n^{3}p_{3}}{\varepsilon}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sec 4. Proof of Key Lemma

$$\frac{\Pr[G(n, (p_2, p_3, p_4)) = G]}{\Pr[G(n, p_2) = G]} \\
\geq (1 - O(\varepsilon)) \sum_{t=0}^{t_0} \sum_{\substack{T \subseteq \mathcal{H}_3(G) \\ |T| = t, |K(T)| = 3t}} p_3^t (1 - p_3)^{\binom{n}{3} - t} p_2^{-3t} \\
= (1 - O(\varepsilon)) \sum_{t=0}^{t_0} (1 - O(\varepsilon)) \binom{\binom{n}{3}}{t} p_2^{3t} p_3^t (1 - p_3)^{\binom{n}{3} - t} p_2^{-3t} \\
\geq (1 - O(\varepsilon)) \sum_{t=0}^{t_0} \binom{\binom{n}{3}}{t} p_3^t (1 - p_3)^{\binom{n}{3} - t} \\
= (1 - O(\varepsilon)) \left(1 - \Pr\left[\operatorname{Bin}\left(\binom{n}{3}, p_3\right) > t_0\right]\right) = 1 - O(\varepsilon).$$

It implies that

$$\mathrm{TV}\Big(G(n,(p_2,p_3,p_4)),G(n,p_2)\Big)=O(\varepsilon).$$

Case III: \exists artifact triangles and quadruples

In this case, the expected number of artifact quadruples is not small, that is,

$$\frac{\varepsilon}{n^{2/3}m^{1/3}}$$

Case III: \exists artifact triangles and quadruples

In this case, the expected number of artifact quadruples is not small, that is,

$$\frac{\varepsilon}{n^{2/3}m^{1/3}}$$

• $|\mathcal{H}_4(G)|$: the number of quadruples in G.

Lemma

Let $\mathcal{G}_4 \subset \mathcal{G}_3$ be the set of all graphs G on V satisfying

$$\begin{aligned} |\mathcal{H}_4(G)| \geq \left(1 - \frac{1}{\varepsilon n}\right) \binom{n}{4} p_2^6. \end{aligned}$$
Then, for $\frac{\varepsilon}{n^{2/3} m^{1/3}}
 $\Pr[G(n, p_2) \in \mathcal{G}_4] = 1 - O(\varepsilon). \end{aligned}$$

Sec 4. Proof of Key Lemma

Goal

For any $G \in \mathcal{G}_4$,

$\Pr[G(n,(p_2,p_3,p_4))=G] \ge (1-O(\varepsilon))\Pr[G(n,p_2)=G].$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sec 4. Proof of Key Lemma

Goal

For any $G \in \mathcal{G}_4$,

$$\Pr[G(n, (p_2, p_3, p_4)) = G] \ge (1 - O(\varepsilon)) \Pr[G(n, p_2) = G].$$

$$\frac{\Pr[G(n, (p_2, p_3, p_4)) = G]}{\Pr[G(n, p_2) = G]} \\
\geq \sum_{\substack{Q \subseteq \mathcal{H}_4(G)}} p_4^{|Q|} (1-p_4)^{\binom{n}{4} - |Q|} p_2^{-|\mathcal{K}(Q)|} \cdot \sum_{\substack{T \subseteq \mathcal{H}_3(G \setminus \mathcal{K}(Q))\\ |Q| \le q_0}} p_3^{|T|} (1-p_3)^{\binom{n}{3} - |T|} p_2^{-|\mathcal{K}(T)|} \\
= (1 - O(\varepsilon)) \cdot \min_{\substack{Q \subseteq \mathcal{H}_4(G)\\ |Q| \le q_0}} \sum_{\substack{T \subseteq \mathcal{H}_3(G \setminus \mathcal{K}(Q))}} p_3^{|T|} (1-p_3)^{\binom{n}{3} - |T|} p_2^{-|\mathcal{K}(T)|},$$

where $q_0 := \frac{n^4 m p^4}{\varepsilon} = \Theta\left(\frac{n^4 p_4}{\varepsilon}\right)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sec 4. Proof of Key Lemma

Let
$$t_0 := \frac{n^3 m p^3}{\varepsilon} = \Theta\left(\frac{n^3 p_3}{\varepsilon}\right)$$
 and $r := \frac{n^4 m^2 p^6}{\varepsilon^3} = \Theta\left(\frac{n^4 p_3^2}{\varepsilon^3}\right)$.
We have that

$$\begin{split} &\sum_{T \subseteq \mathcal{H}_{3}(G \setminus \mathcal{K}(Q))} p_{3}^{|T|} (1 - p_{3})^{\binom{n}{3} - |T|} p_{2}^{-|\mathcal{K}(T)|} \\ &\geq \sum_{t=0}^{t_{0}} \sum_{\substack{T \subseteq \mathcal{H}_{3}(G \setminus Q) \\ |T| = t, l(T) \leq r}} p_{3}^{t} (1 - p_{3})^{\binom{n}{3} - t} p_{2}^{-6t + r} \\ &\geq \sum_{t=0}^{t_{0}} (1 - O(\varepsilon)) \binom{\binom{n}{3}}{t} p_{2}^{6t} \cdot p_{3}^{t} (1 - p_{3})^{\binom{n}{3} - t} p_{2}^{-6t + r} \\ &\geq (1 - O(\varepsilon)) p_{2}^{r} \cdot \sum_{t=0}^{t_{0}} p_{3}^{t} (1 - p_{3})^{\binom{n}{3} - t} \geq (1 - O(\varepsilon)), \end{split}$$

since
$$p_2^r = (1 - e^{-mp^2(1-p)^{n-2}})^r \ge 1 - O(re^{-mp^2}) = 1 - O(\varepsilon).$$

Sec 4. Proof of Key Lemma Proof of Lemma 1

Proof of Lemma 1

Lemma

• TV $(G(n, m; p), G(n, (p_k))) = o(1)$. (essentially by Rybarczyk)

- **2** $TV(G(n, p_2, p_3, p_4), G(n, p_2)) = o(1).$ (Main part)
- $TV(G(n, p_2), G(n, \hat{p})) = o(1)$. (Not hard)

Sec 4. Proof of Key Lemma Proof of Lemma 1

Proof of Lemma 1

Lemma

• TV $(G(n, m; p), G(n, (p_k))) = o(1)$. (essentially by Rybarczyk)

- **2** $TV(G(n, p_2, p_3, p_4), G(n, p_2)) = o(1).$ (Main part)
- $TV(G(n, p_2), G(n, \hat{p})) = o(1)$. (Not hard)

Idea of Proof

- Coupling argument
- Property of Poisson distribution

Sec 4. Proof of Key Lemma Proof of Lemma 1

Coupling argument

Definition

For two random variables X and Y, the coupling (X', Y') of X and Y is a random variable on the product of the sample spaces of X and Y such that the marginal distributions of X' and Y' are the distributions of X and Y, respectively.

Sec 4. Proof of Key Lemma Proof of Lemma 1

Coupling argument

Definition

For two random variables X and Y, the coupling (X', Y') of X and Y is a random variable on the product of the sample spaces of X and Y such that the marginal distributions of X' and Y' are the distributions of X and Y, respectively.

Lemma

- X, Y : random variables.
 - Any coupling (X', Y') of X and Y satisfies

 $\mathrm{TV}(X, Y) \leq \Pr[X' \neq Y'].$

Intervention There exists a coupling such that

 $\mathrm{TV}(X,Y) = \Pr[X' \neq Y'].$

Sec 4. Proof of Key Lemma Proof of Lemma 1

Proof of Lemma (1)

• X := the number of columns of the matrix R(n, m; p) with two or more 1's.

(日) (日) (日) (日) (日) (日) (日) (日)

• $\Pr[|V_a| = k] = \binom{n}{k} p^k (1-p)^{n-k} =: r_k$

•
$$X = Binom(m, q_2)$$
 where $q_2 := \sum_{k \ge 2} r_k$.
Sec 4. Proof of Key Lemma Proof of Lemma 1

G(n, m; p) can be constructed as follows:

• $\mathcal{K}^{(1)}, \ldots, \mathcal{K}^{(h)}, \ldots$: i.i.d. random complete graphs on subsets of V

- the number of vertices in $\mathcal{K}^{(1)}$ is $k(\geq 2)$ with probability r_k/q_2
- Then, once the number is given to be k, every k-subset of V is equally likely to be the vertex set of $\mathcal{K}^{(1)}$.

- In other words, for a k-subset U of V with $k \ge 2$, the probability of U being the vertex set of $K^{(1)}$ is $\frac{r_k}{q_k} {n \choose k}^{-1}$.
- G(n, m; p) is the edge union of X random complete graphs
 K⁽¹⁾, ..., K^(X).

Sec 4. Proof of Key Lemma Proof of Lemma 1

Definition (G_Y)

• Y := Poisson(mq₂) that is coupled with X so that

$$\Pr[X \neq Y] = \mathrm{TV}(X, Y).$$

 Let G_Y be the graph whose edge set is the (edge) union of K⁽¹⁾,...,K^(Y).

Property

2

• G_Y has the same distribution as $G(n, (p_k))$.

$\mathrm{TV}(G(n,m;p),G_Y) \leq \Pr[G(n,m;p) \neq G_Y]$

$$\leq \Pr[X \neq Y] = \operatorname{TV}(X, Y).$$

Sec 4. Proof of Key Lemma Proof of Lemma 1

> Lemma (Barbour and Holst (1989)) Let $X := Binom(m, q_2)$ and $Y := Poisson(mq_2)$. Then $TV(X, Y) \le q_2$.

$$\begin{aligned} \operatorname{TV}(X,Y) &\leq q_2 = \sum_{k \geq 2} \binom{n}{k} p^k (1-p)^{n-k} \leq \sum_{k \geq 2} n^k p^k = O(n^2 p^2) \\ &= O\left(\frac{n^2 \log n}{m}\right) = o(1). \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Sec 4. Proof of Key Lemma Proof of Lemma 1

Problem

Problem

Fix $3 < \alpha < 6$, and let $m = n^{\alpha}$. Find a probability $p^* = p^*(n, m)$ such that

- If $p \ll p^*$, then $\operatorname{TV}(G(n, m; p), G(n, \hat{p})) = o(1)$.
- If $p \gg p^*$, then $\operatorname{TV}(G(n,m;p),G(n,\hat{p})) \ge c$,

for some positive constant c > 0.

Sec 4. Proof of Key Lemma Proof of Lemma 1

Problem

Problem Fix $3 < \alpha < 6$, and let $m = n^{\alpha}$. Find a probability $p^* = p^*(n, m)$ such that • If $p \ll p^*$, then $\mathrm{TV}(G(n, m; p), G(n, \hat{p})) = o(1)$.

• If $p \gg p^*$, then $\operatorname{TV}(G(n,m;p),G(n,\hat{p})) \geq c$,

for some positive constant c > 0.

Question

When $G(n, m; p) \not\sim G(n, \hat{p})$, what are interesting properties and structures of G(n, m; p)?